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Abstract

Key message This work demonstrates that the Olive

tree, which is managed and pruned as a fruit tree, can

be treated as a forest tree using allometric equations, to

estimate both biomass production and volumes.

Abstract The Olive tree (Olea europaea L.) is an ever-

green tree that can grow and accumulate a relatively high

amount of dry matter, even in dry environmental conditions

common in the Mediterranean basin and typical of tradi-

tional rain-fed agriculture. The objective of this research

was to develop a tool to predict woody biomass and tree

component volume for the olive tree, to be used for dif-

ferent agricultural and environmental purposes. The study

was carried out in six olive groves across three locations in

Italy, collecting data on the ‘‘Leccino’’ cultivar, which is

spread worldwide. Models for volume and biomass were

developed for the whole tree and its different components.

Basal diameter and a diameter of 80 cm of the trunk height

were explored as independent variables for modeling. The

results of this study demonstrate a high correlation between

the two selected variables and total biomass, above and

below-ground biomass and tree component volumes. The

same variables show high correlation with total leaf area,

but no correlation with the root/shoot ratio, and Leaf Area

Index.

Keywords Woody biomass � Tree component volume �
Olea europaea � Allometric relationship � ‘‘Leccino’’ cv

Introduction

The olive tree (Olea europaea L.) is the most widespread

cultivated tree species in the Mediterranean basin. It rep-

resents an extended horticultural crop not only in

Mediterranean regions, reaching 10.3 Mha worldwide in

2015 (FAO Statistics Division 2014). The impact of olive

growing in agricultural production is important, especially

in countries where the cultivation of olive trees covers

extensive areas, such as in Spain, Italy or Greece (Beaufoy

2000); the production of olives by these Countries accounts

for 57% of the world’s total output (FAO Statistics Divi-

sion 2013). There is also an increase of the dedicated area

for olive tree cultivation, such as in North Africa and

Middle Eastern Countries. Recently, olive production has

expanded into non-traditional areas like Argentina, South

Africa, Australia, and Chile. The olive tree is extensively

cultivated for its fruits while it is also appreciated for its

multi-functionality, such as the hydrogeological safe-

guarding of mountains and hills, climate mitigation actions,

and landscape enhancement. Although the role of the olive

tree in the environment is well recognized, some infor-

mation about its capacity to grow and accumulate dry

matter is missing. The olive tree is an exciting natural
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resource because it is considered a xerophytic plant, able to

withstand drought conditions and to maintain the right

balance between water intake and uptake. This quality is

vital in a world facing the greatest challenge of meeting the

increase in food demand with the consistent reduction of

water resources available to the population (Pellegrini et al.

2016). The in-depth knowledge of the olive trees’ ability to

grow and to accumulate woody biomass is a key factor in

pursuing sustainable agriculture. It is necessary to assess

carbon storage, potential carbon emission reduction, and

water usage. The production of woody biomass from the

olive tree, always an ancillary aim of the olive grove sys-

tem, could also be taken into consideration and evaluated.

Some information about olive groves’ biomass production

has only recently been published, little information is

available regarding the potential of this species, and little

data has been issued regarding an estimation of its wood or

biomass production (Cantini et al. 1998; Velazquez-Marti

et al. 2014). Biomass may be calculated directly from

measured tree attributes using biomass prediction equa-

tions or estimated indirectly with the IPCC formula by

multiplying the stem volume estimates by basic wood

density (D) and biomass expansion factors (BEF) that

convert stem volume into above-ground biomass (AGB).

This kind of information is more common in forestry than

in agricultural science. As regards forestry, the estimation

of growth, biomass, accumulation, and carbon storage is

usually carried out using ‘indirect’ methods, which rely on

forest inventories instead of complex and costly direct

estimation. The classical non-destructive method to eval-

uate a plant growth rate uses tree allometric equations

based on forest inventories or field measurement. Hence

biomass models, which relate to the dendrometry variables

up to the tree biomass components such as BEF and stand

volume, are particularly useful tools in biomass estimation

of forests and plantations (Brown 2002; Somogyi et al.

2007). Biomass models require tree-level data, which are

usually recorded in forest inventories, such as diameter and

sometimes height (Teobaldelli et al. 2009). Biomass vari-

able like BEF could depend on the site (Wirth et al. 2004),

age (Lehtonen et al. 2004), or stand timber volume (Fang

et al. 2001). However, since BEF is not reliable for biomass

calculation in pruned or pollarded trees (BEF is studied for

trees in their natural habitat), it is preferable to adopt

biomass prediction equations in olive groves. Allometric

equations are the best and most affordable tool to predict

forest tree biomass and volume development (Zianis et al.

2005; Paine et al. 2012; Henry et al. 2013; Mandal et al.

2013). Many allometric equations were recently developed

for tropical, subtropical, and boreal trees or forests (de Jong

et al. 2009; Henry et al. 2011; Návar 2009). Though studies

on temperate species and research on commercial orchards

(i.e., with harvesting, pruning, fertilization, etc.) are limited

or absent in olive groves. Indeed, GlobAllomeTree (Henry

et al. 2013), the most important international platform for

tree allometric equations that contains over 5000 tree

allometric equations classified according to 73 fields, does

not report any information on Olea europaea.

Recently, Velazquez-Marti et al. (2014) have developed

dendrometry algorithms to estimate the woody biomass of

olive trees cultivated in Eastern Spain, using the stem and

crown volume as variables with a non-destructive method,

without defining the influence that cultivars or management

systems might have on the algorithms.

In Spain in 2012, the first research on wild olive (Olea

europaea var. sylvestris) was performed to estimate bio-

mass equations (Ruiz-Peinado et al. 2012). Research

activities on the role of olive tree groves in sequestering

atmospheric CO2 are scarce (Ilarioni et al. 2013; Villalobos

et al. 2005) but relevant (Nardino et al. 2013; Proietti et al.

2014). The development of allometric equations to predict

olive tree biomass would be very useful in the correct

estimation of olive grove biomass accumulation and related

to CO2 sequestration. Also, both genetic and environmental

effects (Marra et al. 2013) influence plant volume and

biomass. Allometric data can be useful in supporting grove

management, and agronomic choices (level of fertilizers,

density, tree shape, pruning, pesticide dose, and irrigation

(Marra et al. 2016).

To date, only olive pruning residues are commonly used

for their energy content (Cantini and Sani 2011; Spinelli

et al. 2011), but this undervalues the olive tree’s potential,

considering its widespread coverage and its capability in

dry matter stocking (Proietti et al. 2014). Moreover, the

methodology applied to this work could also be adopted to

estimate biomass and volumes of other commercial tree

orchards, such as fruit plantations.

These estimates are used in the elaboration of the sus-

tainable planning of forest resources, assessment of mer-

chantable timber, and also the estimation of carbon stock,

especially as requested by the Kyoto protocol. Considering

the potential of the olive tree in carbon storage and

reduction of carbon emissions (Proietti et al. 2016), this

work intends to propose allometric equations as supporting

tools for the estimation of olive woody biomass and

volumes.

Materials and methods

Olive groves and trees

For this research, 14 olive trees cv ‘‘Leccino’’ were

selected in six different experimental orchards, managed by

the University of Perugia in Umbria, by the National

Research Council CNR-IVALSA in Tuscany and by the
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University of Palermo in Sicily (Fig. 1). The selection of

the groves was made to process data from plants growing

under similar agronomical conditions but in various envi-

ronmental conditions to manage data of general interest

and correlated to genetic and dimensional traits of the

plants. All of the plants were trained using a ‘‘vase system’’

with planting density ranging from 70 to 250 trees/ha in

traditional rain-fed conditions. A detailed explanation of

each grove and study area is reported in Table 1.

Trees selection and data recording

The 14 trees were chosen among the most representative

trees of different classes (from 5 to 45 cm) of basal

diameter (DB) and diameter at 80 cm height (D80) that

were selected to proceed to the destructive test. Basal

diameter is the stem diameter that can be measured over

the stump (Villalobos et al. 2005, suggest to measure the

stem diameter at 0.3-m height). Olive trees were sampled

and eradicated after winter pruning, by their belonging to a

diameter class of the trunk, with no interest in age. Before

and after pruning, the height of the trunk and total tree

height was recorded. The maximum north–south and left–

right diameters of the tree canopy were measured, and the

average was determined; the volume of the canopy was

calculated by assimilating it to a cylinder. All the plants

were cut at the base, then the root system was excavated by

machine, and the roots were manually separated to recover

the maximum quantity of below-ground material (root

diameter[2 mm). The fresh tree biomass was weighed in

the field using a dynamometer (KERN CH 50K 50G) and

then dissected into six biomass components: foliage, small

branches (with diameter less than 5 cm), branches, stem,

roots, and stump (basal part of the trunk remaining after

removing the stem) (Villalobos et al. 2005). When the tree

had a basal diameter (BD) of less than 5 cm, branches were

not considered separately from the main stem, or trunk. All

tree components were further cut into pieces, and branches,

stem, roots, and stump volumes were calculated measuring

the heights and diameters of single pieces using equations

of Huber (La Marca 1999) in the field. Twig (foliage and

small branches with diameter less than 5 cm) volume was

calculated by using the measured weight of foliage and

small branches and the measured density value obtained in

the laboratory.

A cubic sample (3 9 3 9 3 cm) of stem, stump, bran-

ches, and root were taken from each selected tree. The

volume of each sample was measured using a xylometer in

the laboratory the same day of the field operation. The

weight of trunk, stem, root, branch, small branches, and

foliage samples were measured using electronic balances

(Gibertini TMB 45/N) in the laboratory. All samples were

oven-dried at 105 �C for more than a week, and weighed

until they reached constant weight (evaluated by two

measurements with the same results). Then the basic den-

sity of wood (D) of each stem, root, branches, and stump

was calculated using the ratio between samples DM by

dividing fresh cut wood volumes.

Total foliage area was measured sampling 100 leaves

equally distributed throughout the canopy. This sample was

weighed using electronic balances (Gibertini TMB 45/N)

in the laboratory. The area of the leaf samples was mea-

sured calculating the diameters as an ellipse. Foliage

samples were oven-dried at 105 �C to a constant weight, as

described above, to determine the dry matter content (DM).

Total foliage dry mass was calculated from foliage samples

fresh weight, DM of foliage samples, and the total foliage

fresh weight. Specific leaf area (SLA) was determined by

dividing the total leaf area of sample to its dry mass. The

total leaf area (TLA) per tree was calculated multiplying

SLA to total leaf dry mass (Bréda 2003).

Leaf Area Index (LAI) was finally calculated by divid-

ing the total leaf canopy area by the area of canopy pro-

jection on the soil (Bréda 2003). Root volume was

calculated by dividing the dry weight by its density.

Statistical analysis

Data of all the plants were processed together in a random

design since the primary variable for modeling was the

measure of the trunk independently from the variables ofFig. 1 Location of the survey areas
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age or location. Linear and non-linear equations were

applied to describe the relation between the two indepen-

dent variables (DB, D80) and the dependent variables

(biomass, volumes, leaf area, and root/shoot ratio). Four-

teen trees were used from their basal diameter data, but

only 12 were used concerning their diameter at 80 cm

because two plants were pollarded and did not reach the

stem height of 80 cm.

As is known, exponential and power law functions are

usually applied for forest trees to predict below-ground

biomass and above-ground biomass. In this research, those

functions are used (Zianis et al. 2005; Matula et al. 2015) to

create new formulas for olive trees for the very first time.

The formula used in the models were:

(a) Linear: y = b ? ax.

(b) Power law: y = b * xa.

(c) Exponential: y = a * ebx.

where x is the independent variable (base diameter or

diameter at 80 cm), y is the expected value of the measured

variable, (above-ground biomass, AGB; below-ground

biomass, BGB; total biomass, TotB; branches biomass,

Bra; twigs biomass, Twi; foliage biomass, Fol; canopy

volume CanV; above-ground volume, AGV; total leaf area,

TLA) and a and b are the model parameters.

A powerful tool for comparing models is the Akaike

information criteria (AIC), Akaike (1973). The AIC is

widely used in the biological, environmental, marine,

watershed, and pharmacological sciences. A wmodel

would be able to capture the variability of a dataset

(under-fitting) and not losing generality (overfitting), AIC

is a way to select the model that best balances these

drawbacks. An AIC score determines the selection of the

‘‘best’’ model:

AIC ¼ 2K � 2 log L ĥjy
� �� �

;

where K is the number of estimable parameters (degrees of

freedom), and log L ĥjy
� �� �

is the log-likelihood at its

maximum point of the model estimated (Akaike 1973). The

best is then the model with the lowest AIC score. It is

important to note that the AIC scores are ordinal and mean

nothing on their own. They are simply a way of ranking the

models.

For the ‘‘best’’ model, the measured and the modeled

data set are compared to estimate the performance of fit-

ting. The goodness of fit was evaluated using traditional

statistical parameters: the coefficient of the correlation (r),

the statistical significance of the estimation (p), the Mean

Absolute Error (MAE), the total root mean square error

(RMSEabs) (Moffat et al. 2007). Model selection, model

fitting, and model evaluation were performed in ‘‘R’’

software (R Core Team 2015) using the functions ‘‘lm’’,T
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‘‘AIC’’, and the ‘‘NLS’’ package (Bates and Chambers

1992) and MATLAB (MATLAB and Statistics Toolbox

Release 2012).

To test the reliability of the selected allometric equation

parameters, the ‘‘bootstrap analysis’’ was performed. The

bootstrap method is a resampling technique for estimating

the properties, such as the variance, of an estimator or

statistic. This approach has been widely applied in several

fields to assess the uncertainties of parameters in simple

time series and its variations, such as in hydrological

models (Li et al. 2010), in pharmacology (Paixão et al.

2017) and in economy (González-Rodrı́guez and Colubi

2017).

In this work, we applied observed data ‘‘resampling with

replacement’’ technique to generate bootstrapped samples

and evaluate the uncertainty of the parameters in the

equations linked to measured values. The resampling pro-

cess was repeated 1000 times, and for each iteration, the

parameters of the model were estimated.

The extra data for each allometric equation (ND) were

calculated and then standardized using the formula:

ND ¼ ðOD � PDÞ
OD

;

(where PD stands for predicted data and OD for observed

data).

Results

Power law models and, in some cases, linear models have

the lowest AIC scores. The statistical estimators were

applied to estimate the performance of fitting (r, MAE,

RMSEabs) and the results are shown in Table 2a for the

basal diameter and Table 2b for the D80 diameter. Selected

equations belong to both power law and linear models, and

these show the high value of the coefficient of correlation

(r) (Table 2). MAE values remained below 0.61935 for DB

and below 3.3266 for D80; RMSEabs values remained

below 23.5802 for DB and below 16.6826 for D80

(Table 3) for each power law selected. MAE values

remained below 2.0038e-14 for DB and 1.7895e-14 for

D80; RMSEabs values below 119.0454 for DB and

111.5512 for D80 (Table 3) for each linear model selected.

The developed exponential models are not shown in this

text, because they show higher AIC values than both linear

and power law models and r value lower than 0.5 (data not

showed).

Root/shoot ratio and LAI did not show any correlation

with the selected independent variables since all relation-

ships elaborated on during the work have no significant

r values.

Uncertainty evaluation

The bootstrap analysis, with resampling technique, was

performed to estimate the uncertainty of power models and

linear models. The Table 3a, b show the range of the

parameters, ‘‘a’’ and ‘‘b’’ for each dependent variables vs.

BD and vs. D80. The power law models show the ‘‘b’’

parameters between 2.0829 (shape of the pattern near to

linear regression) and 0.0022983. For BD and between

3.7379 and 0.015403 for the D80; while for the linear

model between 20.5332 and 0.40264 for BD and between

21.54 and 0.40652 for D80.

The BD vs. Twi, BD vs. Fol and BD vs. TLA power law

models (Figs. 2e, f, 4f) have a linear shape and the ‘‘a’’

values are 1.0503, 1.0008, and 1.0008, respectively. The

models with ‘‘a’’ parameter greater than two shows the

typical power design shape, for example, the BD vs. CanV

model (Fig. 4d) shows an ‘‘a’’ values near to 1.4 and the

form of fitting is intermediate between linear and power

model. The models with the parameters named ‘‘a’’ lower

than two show an uncertainty (the area between the blue

lines) greater than other models: in particular, the BD vs.

CanV and the BD vs. TLA power law models (Fig. 4d, f).

The measured BD values between 20 and 30 cm show a

deep uncertainty in the BD vs. AGV power law models

(Fig. 4e). In this case, the area between the blue lines

decreases with the BD those are greater than 30 and lower

than 15 cm. In general, the deep uncertainty is shown by

models with ‘‘a’’ values comprised between 2.4 and 2.9

(ABG, TotB, and Bra).

Biomass evaluation

Linear and non-linear models evaluated the relations

between the independent variable DB and the dependent

variables of the olive trees (AGB, BGB, twigs, branches,

and total biomass). A graphical visualization of the plotted

data suggested that both power law and linear model

describe the data trend (Figs. 2, 3) correctly; the allometric

equations were selected using AIC values, MAE, and

RMSEabs.

Following this method, the power law equations were

selected to describe the relation between AGB, BGB, TotB,

Bra, and both the independent variables (Figs. 2a–d, 3a–d);

these models also show r values equal to 0.997, 0.986,

0.996, and 0.996 for BD; and 0.998, 0.996, 0.999, and

0.997 for D80.

The other two tree components, twigs, and foliage were

also considered (Figs. 2e, f, 3e, f). In these cases, both

power law and linear models efficiently describe the rela-

tionship between the components and the two diameters, as

showed by the AIC values. Linear and power law models
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Table 3 Ranges of a and b parameters in power models and linear model estimated with bootstrapping technique for BD (a) and D80 (b)

Independent

variable

Dependent

variable

Abbreviation Model a Min a Max a b Min b Max b

(a)

DB Above-Ground

Biomass DM

AGB Linear -101.8103 -222.3472 -27.0946 11.0749 5.8216 15.9636

Power

law

2.4208 1.8821 2.5764 0.05379 0.029975 0.28775

Below-Ground

Biomass DM

BGB Linear -106.3572 -251.9551 -5.8901 9.4583 1.6486 15.7114

Power

law

3.2249 1.3924 7.5094 0.0022983 1.4075e-09 0.66095

Total biomass DM TotB Linear -208.166 -569.8799 -47.0675 20.5332 8.5338 32.9282

Power

law

2.7608 1.723 3.0475 0.028189 0.0095534 0.71707

Branches biomass

DM

Bra linear -135.002 -183.1771 -52.6364 9.2834 4.8547 11.2171

Power

law

2.7544 2.1357 3.2952 0.0096083 0.0017436 0.071498

Twigs biomass

DM

Twi Linear -2.1561 -7.7582 1.5731 1.2235 1.0731 1.6097

Power

law

1.0503 0.92859 1.5785 0.96202 0.19258 1.507

Foliage biomass

DM

Fol Linear -0.39533 -2.1182 1.7617 0.40264 0.31812 0.53106

Power

law

1.0008 0.71987 1.5372 0.38573 0.08422 0.95986

Canopy volume CanV Linear -23.4286 -66.669 -11.0427 3.8364 2.9189 6.1492

Power

law

1.4158 1.0496 3.7815 0.72146 0.00081741 2.8803

Above-ground

volume

AGV Linear -127.6723 -264.7092 -3.306 12.0271 1.8806 17.9159

Power

law

2.9527 2.2343 4.2669 0.0080791 9.1281e-05 0.080273

Total Leaf Area TLA linear -2.1348 -16.0321 11.7191 2.1742 1.5164 3.2085

Power

law

1.0008 0.75296 1.6367 2.0829 0.38193 4.7273

(b)

D80 Above-Ground

Biomass DM

AGB Linear -87.8966 -222.4386 -5.2747 11.364 4.5787 16.7855

Power

law

2.2159 1.3295 2.3334 0.12016 0.076901 1.585

Below-Ground

Biomass DM

BGB Linear -98.3776 -213.3325 -7.9669 10.1759 2.9793 15.1907

Power

law

2.7322 2.1786 5.6144 0.015403 3.2796e-06 0.087986

Total biomass DM TotB Linear -186.2727 -368.6323 -35.179 21.54 8.7835 30.0503

Power

law

2.4484 2.0363 2.7538 0.095009 0.041682 0.35105

Branches biomass

DM

Bra Linear -131.1098 -187.4461 -41.8495 9.6475 4.1563 11.5702

Power

law

2.5611 1.984 3.0189 0.020612 0.0052491 0.13601
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that describe the relation between Twi and Fol and both the

independent variables, show r values higher than 0.927

(Table 2).

Volume estimation

The correlation between size and both diameters (DB and

D80) were investigated. According to the AIC value, both

linear and power law models describe the relationship

between CanV and both the widths (Table 2) efficiently.

Power law model presents r values equal to 0.927 (Fig. 4a)

for BD and 0.933 for D80. Linear model has a coefficient

of correlation equal to 0.927 (Fig. 4d) and 0.932, respec-

tively for DB and D80.

AGV (representing trunk, stump, and branches) is also

analyzed, and power law model was selected, using AIC

values (Fig. 4b, e). Above-Ground volume in the power

law model shows high correlation values, 0.996 for BD and

0998 for D80 (Table 2).

Total leaf area and LAI determination

The graph of the related measure of diameters and Total

Leaf Area (TLA) are reported in Fig. 4c, f. Linear and

power law models for TLA and both the diameters are

comparable, with similar AIC values. Power law models

have coefficients of correlation equal to 0.926 and 0.963,

respectively for DB and D80; while the linear model has a

coefficient of correlation equal to 0.926 and 0.956,

respectively for DB and D80. On the contrary, the diameter

was not a good estimate of LAI as can be seen from the

plot (data not shown).

Plant biomass allocation

The above-ground tree biomass is divided into four ele-

ments, and its distribution is changed concerning the

increasing diameters, as shown in Table 4 and Fig. 5. In

particular Fig. 5 shows how the plant ‘growth is allocated

to different tissues: foliage, small branches (without foli-

age) and trunk biomass partitioning coefficients decrease

with time, while branch biomass partitioning coefficient

increases. For example, for an olive tree with 8 cm DB the

partitioning coefficient for foliage, small branches, bran-

ches, and trunk are 0.2, 0.35, 0.15, and 0.3, while in an

olive tree with 44.5 cm DB, it becomes 0.03, 0.06, 0.63,

and 0.28, respectively.

While AGB parameters seem to follow an allometric

model, no significant relation between both independent

variables and root/shoot ratio were observed.

Furthermore, the relation between plant age and root/

shoot ratios doesn’t show significant correlation (data not

shown); consequently, the root/shoot ratio of the olive plants

cannot be described with simple allometric equations.

Models evaluation

An overall assessment of all the tested power law models

and all the linear models are shown in Figs. 6 and 7, where

types’ divergences are related to each of the dependent

Table 3 continued

Independent

variable

Dependent

variable

Abbreviation Model a Min a Max a b Min b Max b

Twigs biomass

DM

Twi Linear 0.29843 -5.6183 6.6949 1.1997 0.97183 1.6874

Power

law

0.92766 0.75987 1.613 1.5402 0.20231 2.8597

Foliage biomass

DM

Fol linear 0.57091 -1.5485 2.8661 0.40652 0.31988 0.56231

Power

law

0.85583 0.68215 1.2956 0.69221 0.19741 1.3016

Canopy volume CanV Linear -16.502 -41.2651 -2.6871 3.7357 1.9069 5.7731

Power

law

1.2887 0.88083 2.7024 1.1676 0.017519 4.603

Above-ground

volume

AGV Linear -114.9777 -279.2074 -9.2954 12.6258 3.1205 18.1628

Power

law

2.628 2.1142 3.1597 0.028587 0.0048968 0.16123

Total Leaf Area TLA Linear 3.0829 -11.0142 20.0888 2.1952 1.6507 3.2319

Power

law

0.85583 0.73403 1.3774 3.7379 0.79685 5.8594
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variables. The graphs show how the differences between

the observed data and data estimated values decline when

the plant diameters increase, for all the allometric

equations.

Figure 6 represents the ND values obtained from the

divergences between observed data and linear model-esti-

mated data, and shows the absence of a correlation between

BD and the selected dependent variables. These linear

Fig. 2 Power models between dependent variables: a AGB; b BGB; c ToTbio; d BRA; e Twi; Fol (f) and olive base diameter (BD). Black

circle are observed data; red line is expected data; blue lines containing bootstrapped uncertainty values

Fig. 3 Linear models between dependent variables: a AGB; b BGB; c ToTbio; d BRA; e TWI, Fol (f) and olive base diameter (BD). Black

circle are observed data; red line is expected data; blue lines containing bootstrapped uncertainty values
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models, in fact, result in an over-estimation or an under-

estimation of the observed data. Overall, when DB is over

30 cm, ND values remain between 0.5 and -0.5; while

with DB under 30 cm, ND values are between -0.6 e?5.5.

Linear models always give negative results with DB under

15 cm (with the exception of FOL and TLA where the

estimated data are correct also for smaller DB). BGB and

BVG show larger differences between estimated values and

biomass; probably due to sampling uncertainty and also to

the simplicity of the models. The above-ground-compart-

ments models, describing AGV and AGB, are discordant

one to another when DB is in the range of 15 and 21 cm

(AGB show higher estimated values in respect to the AGV

estimated value).

Figure 7 represents the ND values obtained from the

divergences between observed data and data estimated with

power law models. When DB values are lower than 10 cm

the allometric equations for BGB, BGV, TOTB e AGV

underestimate the measurement based calculations, while

the allometric equations for Twi e TLA overestimate them.

The application of the ABG allometric equation, however

results in a correct estimation.

As regards DB values between 10 and 20 cm, only the

allometric equations for TotB, Twi, AGB, and TLA give

acceptable results. For larger DB values, all equations

perform sufficiently well.

Comparing the results shown in Figs. 6 and 7, the

selected power law models have lower deviations between

observed and estimated data than linear models (ND in

power law is between -0.8 and 1 while ND in linear model

is between -0.6 and ?5.6). Estimates are restricted to DB

larger than 1 cm.

Discussion

Non-destructive tests used to estimate the biomass of olive

groves are still not available in the literature. On the other

hand, some remote sensing research has already been

conducted and validated to predict tree height (Zarco-Te-

jada et al. 2014) and canopy volume (Sánchez et al. 2014;

Caruso et al. 2014; La Scalia et al. 2016) in the olive grove.

Therefore, it is relevant to develop useful tools to estimate

tree biomass components and related volumes in Olea

europaea trees which are managed and pruned.

According to the dendrometry method, at least two

hypotheses exist to predict the biomass of a forest tree,

even though they are not universally recognized:

1. the metabolic scaling theory (Enquist et al. 1998), that

predicts a power relationship with exponent -4/3

between tree biomass and diameter;

2. the diameter-height relationships theory described in

Chave et al. (2014), where the allometry between

tropical tree biomass and rD2H (where r is wood

density, D diameter, H height) is considered universal.

Fig. 4 Linear model between dependent variables: a CanV; b AGV;

c TLA and olive base diameter (BD). Power law model between

dependent variables: d CanV; e AGV; f TLA olive base diameter

(BD). The black circle is observed data; the red line is expected data;

blue lines are containing bootstrapped uncertainty values
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The authors believe that testing these theories on olive

trees would guide towards biased results, because both

height and tree biomass are periodically modified by

human intervention, adding a variable that is not consid-

ered by the theories mentioned above. Moreover, both

theories have some contraindications, since the metabolic

scaling theory received many criticisms (Coomes et al.

2012; Mäkelä and Valentine 2006), while the second

theory is considering only tropical trees (and it is not a

biomass equation as such since it requires wood density

as input). For this reason, an allometric approach for Olea

europaea biomass prediction was tested and verified.

Elaborations of statistical biomass equations are assumed

to be preferable compared to the IPCC formula because

the size of the olive stem is always artificially manipu-

lated by pollarding operations. The IPCC formulation uses

a simple Biomass Expansion Factor (BEF) which is

constant over time. However, as shown by Sanquetta

et al. (2011), BEF is not constant in time but decreases

with plant age and size. In fact, as regards olive trees,

BEF is even less predictable since the trunk height

changes from place to place, making BEF an unreliable

index in a broader contest.

Pollarding operations and pruning intensities, that

change from place to place, unpredictably influence the

tree height, making this data an unreliable independent

variable in allometric equations for biomass prediction.

Another variable that the authors did not consider in

building the allometric relationships (after testing it—data

Table 4 Tree component allocation

Base

diameter

Diameter at

80 cm

Foliage

biomass (%)

Small branches

biomass (%)

Branches

biomass (%)

Trunk biomass

(%)

ABG

(%)

BGB

(%)

Root/shoot

ratio

1.0 0.5 20.0 40.0 0.0 40.0 87.0 13.0 0.15

6.5 5.0 13.9 17.9 0.0 68.3 68.5 31.5 0.46

8.0 7.0 19.7 30.5 15.5 34.3 64.7 35.3 0.55

10.0 0.0 13.8 40.6 9.4 36.2 67.1 32.9 0.49

14.5 13.5 14.1 28.0 37.6 21.3 84.2 15.8 0.19

15.0 11.5 17.3 29.0 26.5 27.2 83.3 16.7 0.20

16.5 15.0 13.2 18.6 32.7 35.4 78.6 21.4 0.27

17.0 15.0 12.7 18.9 21.5 35.5 78.8 21.2 0.27

21.0 20.0 7.1 19.3 55.6 19.9 60.3 39.7 0.66

21.5 20.5 12.9 13.4 59.1 14.6 50.7 49.3 0.97

26.5 0.0 4.4 15.8 60.2 19.6 80.8 19.2 0.24

27.0 26.0 8.1 16.3 58.0 17.6 62.0 38.0 0.61

30.5 29.0 6.4 12.9 53.1 27.6 54.3 45.7 0.84

44.5 44.0 3.1 5.9 62.9 28.2 52.8 47.2 0.89

Fig. 5 Tree components allocation (foliage, small branches without

leaves, branches and trunk included stump) vs. base diameter (BD)

Fig. 6 Combined graph of percentage differences between the

obtained predicted data from all the tested linear models and their

observed data
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not shown) is the age since the size of an olive tree appears

to be influenced by site conditions and human intervention.

In this study, non-linear models, and in few cases linear

models, were selected to describe the relationship between

trunk diameters and the most important tree parameters.

The authors generated allometric equations deriving from

both the independent variables DB and D80. As a matter of

fact, it was preferred to show DB correlation curves with

dependent variables because DB is a parameter always

available in the field, while D80 sometimes is not mea-

surable (in many Mediterranean traditional and commercial

orchards the trunk reaches a height of 60–80 cm). How-

ever, D80 shows acceptable values regarding RMSEabs

and this independent variable should be investigated by

increasing the number of sampled trees.

Recent scientific studies on conifer forests prove that

linear models, commonly used in the forest sector, are

inadequate to describe tree growth because they cannot

efficiently show the growth rate of the whole plant and its

components at different ages (Parresol 2001; Calama and

Montero 2004; Matula et al. 2015). The ultimate limit of

traditional forest biomass and volume calculation is due to

the assumption of constant absolute growth rate (AGR),

and so the same quantity of biomass is added in each unit

of time. Biomass acquisition is independent of current

biomass. This assumption is unacceptable for the initial

stage of tree life, as AGR should depend on leaf area when

resources are unlikely to be limiting (Paine et al. 2012;

Matula et al. 2015). Then the best way to accommodate

temporal variation in growth rates is with non-linear

growth models for trees growing in a natural environment.

It was taken into consideration that olive tree pruning

alters body size and biomass distribution, influencing all

canopy parameters (canopy volume, twigs biomass, foliage

biomass, and TLA) and probably the root development

related to the TLA. Statistical parameters (r value and AIC)

prove that both linear and power law models are equivalent

in describing the studied relationships (Fol, CanV, TLA),

and are accepted to predict the above-ground-mentioned

parameters.

The power law model describes more efficiently

parameters like AGB, BGB, TotB, BRA, and AGV, con-

firming the rapid initial growth and the subsequent slow-

down of the trees growth.

The authors decided to consider two volume regression

equations (CanV, AGV) since these could be applied to the

prediction of olive biomass using non-destructive

methodologies such as remote sensing, LIDAR, or photo-

graphic surveys.

Results obtained from the relations between vol-

umes/diameters and total leaf area/diameters demonstrate

an opportunity to estimate biomass for managed olive trees.

Such prediction is more reliable for plants that are mea-

sured at its BD from 10 cm onward as demonstrated by

Figs. 6 and 7. Although the produced equation could effi-

ciently describe the biomass and volume of olive trees, the

uncertainty of the estimated parameters is large, probably

due to the low number of plants analyzed and the man-

agement techniques applied to the olive grove that modifies

the natural plant growth. Indeed, human activities influence

the growth of olive trees, changing biomass production and

allocation on forest trees; for this reason, allometric

equations usually applied to forest species could show

wider intervals of confidence.

This work also illustrates how the biomass allocation

varies in relation to the tree components during its growth:

small plants, between 1 and 15 cm of BD, mainly accu-

mulate biomass into the trunk (around 45%) and foliage

(around 17%) while in bigger trees, biomass allocations are

collected in branches (around 65%). The marked tendency

is explained by the constant pruning activity influencing

the quantity of twig biomass and canopy volume, while

trunk increasing biomass regards only diameter. The only

tree component which increases its volume and its biomass

is the branch element because pruning influences its growth

less intensively than that of twigs.

Above mentioned equations are also relevant deter-

mining the role of olive groves for carbon sequestration as

reported in Ilarioni et al. (2013) and Villalobos et al.

(2005). As demonstrated by Proietti et al. (2016), olive

groves are agricultural systems that can contribute

regarding sequestered CO2-eq and possible avoided emis-

sions as a result of sustainable practices. These activities

are identified by the Kyoto Protocol and then in the Paris

agreement to actually reduce GreenHouse Gas (GHG)

emissions, since they are closely related to land use,

Fig. 7 Combined graph of percentage differences between the

obtained predicted data from all the tested power law models and

their observed data
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included in the category of Agriculture, Forestry and Land

Uses (AFOLU); and then in the Paris agreement as the

instrument that will allow valuing forest carbon stocks in

the UNFCCC framework. Considering, for example, the

intensively managed olive groves in the Umbria region,

one of the three areas in which this study was carried out,

they could contribute to the 10% emission allowances of

the entire region (in 2015). These carbon credits, even

though at this moment considered ineligible under the

Kyoto Protocol, could be valued within the Voluntary

Market by profit and non-profit organizations, local

administrations and even individuals, to offset, entirely or

partially, the emissions for which they are responsible.

Nevertheless, uncertainties in the relationship between BD

and biomass that might origin from variations in leaf area

index or root/shoot ratios needs to be addressed in future

research. Considering that the LAI value is the relationship

between total leaf area and the area of the ground covered

by the crown projection, results can be explained by the

difference in pruning among plants. Even with the same

training system (in this case polyconic vase), pruning

cannot be standardized regarding intensity and/or height of

the crown because the capacity of the plant to maintain a

very dense or sparse foliage is related to the intensity of the

light. Also, the root/shoot ratio was not efficiently descri-

bed by an equation nor related to BD or age. As reported by

Mokany et al. (2005), this is an important descriptor of the

relationship between root and shoot biomass. Carbon

sequestration would in particular benefit from an improved

root/shoot ratio that is currently mainly determined for

forest trees.

Conclusions

This work generated allometric equations that can be used

to assess olive tree volume and biomass for Olea euro-

paea ‘‘Leccino’’ cultivar in their components trained

using a ‘‘vase system.’’ This study demonstrates that when

facing a uniform genotype and training system, the

resulting allometric equations for AGB, BGB, total bio-

mass, and individual volumes are reliable and statistically

significant. These results offer a tool to estimate biomass

and volumes of commercial olive orchards, which are

relatively easy and cost-efficient to execute. This

approach is supposed to be applicable to predict volumes

and biomass of other trees that are cultivated for fruit

production.

DB is a reliable parameter to predict olive tree biomass

and volume of ‘‘Leccino’’ cultivar. The allometric equa-

tions could be usefully adopted for olive cultivars that have

similar habit and vigor. It is recommended that the

methodology is tested also for other cultivars and training

systems to find characteristic equations to be adopted to

predict biomass and volumes of Olea europaea L. species.

Acknowledgements This work was financially supported by the

MIUR-PRIN Project ‘Climate change mitigation strategies in tree

crops and forestry in Italy’ (CARBOTREES). We gratefully

acknowledge the valuable collaboration of Adele Amico Roxas,

Laura Macaluso, and the workers of ESA (Ente di Sviluppo Agricolo)

for help during the operations in the field. We are grateful to the two

anonymous reviewers and the Editor that gave important and useful

suggestions to improve this paper.

Author contribution statement AB: study conception and design;

collection, analysis, and interpretation of data; article drafting; final

draft revision; final approval of the manuscript. FD: statistical anal-

ysis of data; analysis and interpretation of data; article drafting; final

draft revision. CC: study conception and design; field data collection;

final draft revision. GS: Field data collection and analysis; critical

revision of the manuscript. TLM: Field data collection and analysis;

critical revision of the manuscript. TC: Field data planning and col-

lection; critical revision of the manuscript. MFP: analysis and inter-

pretation of data; critical revision of the manuscript. CT: statistical

analysis of collected data; graph construction; critical revision of the

manuscript. LN: Field data collection and critical revision of the

manuscript. LR: Field data collection; critical revision of the manu-

script. PP: study conception and design; final approval of the

manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

Akaike H (1973) Information theory and an extension of the

maximum likelihood principle. In: Petrov BN, Csáki F (eds)
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